Hari/tanggal: senin /2 desember 2019
Jenis-jenis Transformasi Geometri
1. Translasi (Pergeseran)
Translasi adalah salah satu jenis transformasi yang berguna untuk memindahkan suatu titik sepanjang garis lurus dengan arah dan jarak.Yang berarti, translasi tersebut hanya akan mengalami perpindahan titik ya guys.
Penentuan hasil objek lewat translasi cukup mudah. Caranya hanya dengan cara menambahkan absis serta ordinat dengan jarak tertentu sesuai dengan ketentuan tertentu.
Untuk lebih jelasnya tentang proses translasi bisa dilihat pada gambar di bawah.
Sebagai contoh:
Jika kalian perhatikan baik-baik, apabila kita sedang naik perosotan, perosotan itu hanya akan mengubah titik awal (puncak perosotan), menuju titik akhir (ujung perosotan).
Berikut adalah gambaran dari translasi:
Dari gambar di atas, dapat kita ketahui bahwa translasi hanya dapat berubah posisinya saja. Ukuran akan tetap sama.
Adapun rumus dari translasi, yaitu:
(x’ , y’) = (a , b) + (x , y)
Keterangan:- (x’ , y’) = titik bayangan
- (a , b) = vektor translasi
- (x , y) = titik asal
2. Refleksi (Pencerminan)
Pembahasan selanjutnya yaitu pencerminan atau yang biasa kita kenal dengan sebutan refleksi.Sama halnya dengan bayangan benda yang terbentuk pada sebuah cermin. Suatu objek yang mengalami refleksi akan mempunyai bayangan benda yang dihasilkan oleh suatu cermin.
Hasil dari refleksi pada bidang kartesius tergantung sumbu yang menjadi cerminnya.
Refleksi tersebut akan memindahkan seluruh titik dengan memakai sifat pencerminan pada cermin datar.
Coba lihatlah garis dan juga beberapa titik merah gambar di atas. Garis dan juga titik-titik merah tersebut berpindah hal itu sama seperti yang ada pada benda yang dihadapkan pada cermin datar.
Sama halnya dengan translasi, refleksi juga mempunyai rumus tersendiri lho. Berikut informasi selengkapnya.
Rumus Umum Refleksi
- Pencerminan terhadap sumbu -x : (x,y) → (x, -y)
- Pencerminan terhadap sumbu -y : (x,y) → (-x, y)
- Pencerminan terhadap garis y = x : (x,y) → (y,x)
- Pencerminan terhadap garis y = x : (x,y) → (-y, -x)
- Pencerminan terhadap garis x = h : (x,y) → (2h -x,y)
- Pencerminan terhadap garis y = k : (x,y) → (x, 2k – y)
Jenis tersebut diantaranya yaitu: refleksi terhadap sumbu x, sumbu y, garis y = x, garis y = -x, titik O (0,0), garis x = h, dan garis y = k.
Berikut ini adalah ringkasan daftar matriks transformasi yang ada di refleksi atau pencerminan.
Kemudian, mari perhatikan uraian matriks transformasi untuk masing-masing jenisnya.
Pencerminan terhadap sumbu x
Pencerminan Terhadap Sumbu y
Pencerminan terhadap Garis y = x
Pencerminan terhadap Garis y = – x
Pencerminan terhadap Titik Asal O(0,0)
Pencerminan terhadap Garis x = h
Pencerminan terhadap Garis y = k
3. Rotasi (Perputaran)
Rotasi atau perputaran adalah sautu perubahan kedudukan atau posisi objek dengan cara diputar lewat suatu pusat dan sudut tertentu.Besarnya rotasi dalam transformasi geometri sebesar α yang telah disepakati untuk arah yang berlawanan dengan arah jalan jarum jam.
Apabila arah perputaran rotasi pada sebuah benda searah dengan jarum jam, maka sudut yang dibentuk yaitu -α.
Hasil dari rotasi sebuah objek tergantung dari pusat serta besar sudut rotasi. Perhatikan perubahan letak kedudukan segitiga yang diputar sebesar 135° dengan pusat o(0,0) pada gambar di bawah ini.
Di kehidupan nyata, bianglala yang sering kita lihat di tempat rekreasi merupakan salah satu contoh dari rotasi dalam transformasi geometri lho.
Prinsip yang digunakan sama dengan rotasi dalam transformasi geometri, dimana memutar pada sudut serta titik pusat tertentu yang mempunyai jarak sama dengan setiap titik yang diputar.
Adapun rumus yang digunakan dalam rotasi transformasi geometri, antara lain:
- Rotasi sebesar 90° dengan pusat (a,b) : (x,y) → (-y + a+b, x -a + b)
- Rotasi sebesar 180° dengan pusat (a,b) : (x,y) → (-x + 2a+b, -y + 2b)
- Rotasi sebesar -90° dengan pusat (a,b) : (x,y) → (y – b + a, -x + a + b)
Tidak ada komentar:
Posting Komentar